Dynamic projection network for supervised pattern classification
نویسندگان
چکیده
منابع مشابه
Dynamic projection network for supervised pattern classification
This paper describes the development of the utility of a dynamic neural network known as projection network for pattern classification. It first gives the derivation of the projection network, and then describes the network architecture and analyzes properties such as equilibrium points and their stability condition. The procedures for utilizing the projection network for pattern classification...
متن کاملProjection Pursuit for Exploratory Supervised Classification
In high-dimensional data, one often seeks a few interesting low-dimensional projections that reveal important features of the data. Projection pursuit is a procedure for searching high-dimensional data for interesting low-dimensional projections via the optimization of a criterion function called the projection pursuit index. Very few projection pursuit indices incorporate class or group inform...
متن کاملComment on "Ensemble Projection for Semi-supervised Image Classification"
Abstract—In a series of papers by Dai and colleagues [1], [2], a feature map (or kernel) was introduced for semiand unsupervised learning. This feature map is build from the output of an ensemble of classifiers trained without using the ground-truth class labels. In this critique, we analyze the latest version of this series of papers, which is called Ensemble Projections [2]. We show that the ...
متن کاملSupervised classification for gene network reconstruction.
One of the central problems of functional genomics is revealing gene expression networks - the relationships between genes that reflect observations of how the expression level of each gene affects those of others. Microarray data are currently a major source of information about the interplay of biochemical network participants in living cells. Various mathematical techniques, such as differen...
متن کاملSupervised Pattern Classification Using Optimum-Path Forest
We present a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), and describe one of its classifiers developed for the supervised learning case. This classifier does not require parameters and can handle some overlapping among multiple classes with arbitrary shapes. The method reduces the pattern recognition problem into the computation of an optimum-path forest in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2005
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2005.06.001